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What does today’s cloud offer as a service?

ØGeneric compute and storage resources

ØSpecialized accelerators
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Emergence of programmable network devices

ØPipeline-based programmable devices
ØIn-network switches
ØAt-host SmartNICs

ØEnable wide-range innovations for classical networked systems
ØConsensus: NOPaxos, NetPaxos
ØConcurrency control: Eris
ØCaching: NetCache, IncBricks
ØStorage: NetChain, SwitchKV
ØApplications: SwitchML, NetAccel
Ø…
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Why not offer such system as a cloud service?

ØNeed of multitenancy support
ØProvider’s aspect

ØImprove resource utilization
ØOne application can hardly consume all the hardware resources
ØHeterogenous resource requirement

ØTenant’s aspect
ØEnable innovations

ØNew programs can be easily tested w/o impacting basic network functionality
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Our vision: a hybrid compile-time and run-time solution

Requirements:
ØResource efficiency

ØLittle overhead
ØIsolation

ØPerformance
ØAllocated resource

How to enable multitenancy for programmable devices?
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Background on programmable network devices



Performance

Programmability

Programmable devices’ characteristics

ØVarious types of hardware resources
ØMost of them are decided during compile time

ØLimited run-time support
ØHardware wirings are decided during compile time

ØLine-rate performance achieved after successful compilation
ØNo temporal scheduling (e.g., CPU or NPU scheduling)
ØNo spatial reconfiguration (e.g., FPGA [AmorphOS, OSDI’18])

ØResource efficiency
ØLittle overhead

ØIsolation
ØPerformance
ØAllocated resource 7



A hybrid compile-time and run-time solution

ØCompile-time program linker
ØTarget generic resources (e.g., SRAMs/TCAMs, action units, etc.)
ØBut static

ØRun-time memory allocator
ØTarget stateful memory
ØBut limited
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System overview
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Goals of compile-time linker

ØRestrict resource usage

ØProvide isolation
ØEnsure tenant program does not inference with others’
ØEnsure no infinite packet resubmitting
ØEnsure no loop forwarding configuration
Ø…
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Parser

ØFixed packet format
ØEth, VLAN, IP, TCP or UDP header 

followed by custom headers

ØSystem program
ØExtract common headers

ØTenant Programs
ØExtract tenant-defined headers
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Control (ingress and egress) pipeline

ØFeed-forward packet flow
Ø“Sandwich” architecture

Øwrite-then-read half
Ø read-then-write half

ØSystem program
ØInteract with tenant programs
ØE.g., pass system states 
ØConvert virtual addresses to physical 

ones
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Implementation

ØPrototype on Barefoot Tofino switch
ØCompile-time linker

ØExtend open-source P4 compiler[1]

ØRun-time memory allocator
ØBase on auto-generated APIs to pull records and modify table entries

[1] https://github.com/p4lang/p4c 14

https://github.com/p4lang/p4c


Compile-time program linker correctness

ØResource usage on Tofino
ØPacket-level validation on PTF

ØSys program
ØBasic parsing and forwarding logics

Ø[SOSP’17] NetCache
Ø[NSDI’18] NetChain

ØOverhead
ØAdditional gateway tables to check 

which program to be executed
ØAdditional tag-along PHV containers
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Run-time memory allocator efficiency

ØExperimental Setting
Ø64 tenants submit 1-min heavy hitter 

detection task against source IP address 
within its /6 subnets

Ø10-min CAIDA trace replay

ØEvaluation metric
ØUtility: memory hit ratio
ØSatisfaction: time fraction w/ utility > 0.9
ØWe show the mean and 5th percentile
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Conclusion

ØTakeaways
ØA hybrid solution for multi-tenancy support
ØCompile-time linker: general but static
ØRun-time memory allocator: dynamic but limited

ØFuture work
ØSeek new hardware design

ØBoth general and dynamic
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Thanks!
Happy to take questions

tw1921@nyu.edu


