
Multitenancy for Fast and Programmable 
Networks in the Cloud

Tao Wang*, Hang Zhu*, Fabian Ruffy, Xin Jin, Anirudh Sivaraman, 
Dan Ports, and Aurojit Panda

(*Equal contribution)



What does today’s cloud offer as a service?

ØGeneric compute and storage resources

ØSpecialized accelerators

2



Emergence of programmable network devices

ØPipeline-based programmable devices
ØIn-network switches
ØAt-host SmartNICs

ØEnable wide-range innovations for classical networked systems
ØConsensus: NOPaxos, NetPaxos
ØConcurrency control: Eris
ØCaching: NetCache, IncBricks
ØStorage: NetChain, SwitchKV
ØApplications: SwitchML, NetAccel
Ø…

3



Why not offer such system as a cloud service?

ØNeed of multitenancy support
ØProvider’s aspect

ØImprove resource utilization
ØOne application can hardly consume all the hardware resources
ØHeterogenous resource requirement

ØTenant’s aspect
ØEnable innovations

ØNew programs can be easily tested w/o impacting basic network functionality

4



Our vision: a hybrid compile-time and run-time solution

Requirements:
ØResource efficiency

ØLittle overhead
ØIsolation

ØPerformance
ØAllocated resource

How to enable multitenancy for programmable devices?

5



Parser

…

Match Action

Match Action

Stage 1

Ingress Pipeline

……
Egress 
Pipeline

…

Queues

Stateful Mem Circuit

…
Ethernet header

…Packet 
Headers …Queue length

Hardware 
enqueue port

Per-packet
Metadata

Exact match Xbar
Ternary match Xbar
SRAMs/TCAMs

PHV
container

e.g., register

Action 
units

6

Background on programmable network devices



Performance

Programmability

Programmable devices’ characteristics

ØVarious types of hardware resources
ØMost of them are decided during compile time

ØLimited run-time support
ØHardware wirings are decided during compile time

ØLine-rate performance achieved after successful compilation
ØNo temporal scheduling (e.g., CPU or NPU scheduling)
ØNo spatial reconfiguration (e.g., FPGA [AmorphOS, OSDI’18])

ØResource efficiency
ØLittle overhead

ØIsolation
ØPerformance
ØAllocated resource 7



A hybrid compile-time and run-time solution

ØCompile-time program linker
ØTarget generic resources (e.g., SRAMs/TCAMs, action units, etc.)
ØBut static

ØRun-time memory allocator
ØTarget stateful memory
ØBut limited

8



System overview

Resource Sharing Policy

Resource Usage Checker

Program Linker

Merged Jumbo Program

S T1 Tn…

Tenants

Translation Layer

Submit request

Data Plane

Control Plane

Header & Metadata
Stage 1 Stage 2 Stage 3 Stage m…

Table Entry 
Handler

Run-time

Memory
Allocator

Utility
Calculator

Reallocation
Problem
Solver

Config
Params

One Big Array

…
Sys & 
Tenant
Tables

One Big Array

Sys & 
Tenant
Tables

One Big Array

Counter
Record

One Big Array

1

2

3
Compile-time Linker



Goals of compile-time linker

ØRestrict resource usage

ØProvide isolation
ØEnsure tenant program does not inference with others’
ØEnsure no infinite packet resubmitting
ØEnsure no loop forwarding configuration
Ø…

10



Parser

ØFixed packet format
ØEth, VLAN, IP, TCP or UDP header 

followed by custom headers

ØSystem program
ØExtract common headers

ØTenant Programs
ØExtract tenant-defined headers

Parser

Header {
Ethernet hdr
IP hdr
VLAN hdr
TCP or UDP hdr
T1 hdr
…
Tn hdr

}

apply S’s parser to 
extract common 

headers

System 
Program

if (tag==T1’s VID)
apply T1’s parser

…

Tenant
Programs

11



Control (ingress and egress) pipeline

ØFeed-forward packet flow
Ø“Sandwich” architecture

Øwrite-then-read half
Ø read-then-write half

ØSystem program
ØInteract with tenant programs
ØE.g., pass system states 
ØConvert virtual addresses to physical 

ones

Control Pipeline

System states {
…
link utilization
packet count
…

}

Pass system 
states to 
tenants

if (tag==T1’s VID)
apply T1’s ctrl

…

Convert to 
system 
states

System states {
egress_port
…

}

Packet Flow

12



Config
Params

One Big Array

One Big Array

Counter
Record

One Big Array

Memory
allocator

Control 
Plane

Run-time memory allocator
ØPage-table-like indirection 

Match Action

VID==1 metadata.offset=0
metadata.amount=26

VID==2 metadata.offset=512
metadata.amount=24

… …

pkt.physical_address = 
metadata.offset + (pkt.virtual_address % metadata.amount)

Register Array

Tenant 1

Tenant 2

13



Implementation

ØPrototype on Barefoot Tofino switch
ØCompile-time linker

ØExtend open-source P4 compiler[1]

ØRun-time memory allocator
ØBase on auto-generated APIs to pull records and modify table entries

[1] https://github.com/p4lang/p4c 14

https://github.com/p4lang/p4c


Compile-time program linker correctness

ØResource usage on Tofino
ØPacket-level validation on PTF

ØSys program
ØBasic parsing and forwarding logics

Ø[SOSP’17] NetCache
Ø[NSDI’18] NetChain

ØOverhead
ØAdditional gateway tables to check 

which program to be executed
ØAdditional tag-along PHV containers

0

50

100

150

Exac
t M

atch
 Xbar

SR
AM

Hash Bits
 Unit

Acti
on Units

#Sta
ge

s

Gateway
 Ta

bles
PHVRe

so
ur

ce
 U

sa
ge

 (%
 o

f t
ot

al
)

Merged program Sys program NetCache NetChain

15



Run-time memory allocator efficiency

ØExperimental Setting
Ø64 tenants submit 1-min heavy hitter 

detection task against source IP address 
within its /6 subnets

Ø10-min CAIDA trace replay

ØEvaluation metric
ØUtility: memory hit ratio
ØSatisfaction: time fraction w/ utility > 0.9
ØWe show the mean and 5th percentile

16



Conclusion

ØTakeaways
ØA hybrid solution for multi-tenancy support
ØCompile-time linker: general but static
ØRun-time memory allocator: dynamic but limited

ØFuture work
ØSeek new hardware design

ØBoth general and dynamic

17



Thanks!
Happy to take questions

tw1921@nyu.edu


